

Thymed

[image: PyPI] [https://pypi.org/project/thymed/]
[image: Status] [https://pypi.org/project/thymed/]
[image: Python Version] [https://pypi.org/project/thymed/]
[image: License]

[image: Read the documentation at https://thymed.readthedocs.io/]
[image: Tests] [https://github.com/czarified/thymed/actions?workflow=Tests]
[image: Codecov] [https://app.codecov.io/gh/czarified/thymed]

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]

Features

	Flexible ChargeCode system with no limits on the number of codes you can define.

	Simple method to “punch” a ChargeCode. Punching logs the current timestamp and changes the “state” of the ChargeCode (active/passive or “on/off the clock”).

	All data is stored locally! It’s yours, you have complete control over it! There’s no online backups, no phoning home, no licensing.

	Command-Line Interface (CLI) for creating, listing, and punching in/out of charge codes.

Requirements

	No major requirements. If you have a Python version >= 3.8, you’re good to go! Check out the installation section below.

	Being familiar with the command-line is a plus. If the terminal scares you, this might not be the right tool for you.

	Thymed uses Rich [https://github.com/Textualize/rich] for console markup. A modern terminal will make output much prettier! :wink:

Installation

You can install Thymed via pip [https://pip.pypa.io/] from PyPI [https://pypi.org/]:

$ pip install thymed

Usage

Please see the Command-line Reference for details.

Contributing

Contributions are very welcome.
To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license,
Thymed is free and open source software.

Issues

If you encounter any problems,
please file an issue [https://github.com/czarified/thymed/issues] along with a detailed description.

Credits

This project was originally generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.

Usage

thymed

Thymed.

This command serves as the main entrypoint into
the Thymed CLI. Subcommands exist for each specific action.

For more information, try: thymed hello

thymed [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

create

Create a new ChargeCode.

Create a new ChargeCode object with the given id.

thymed create [OPTIONS]

hello

See information about Thymed.

thymed hello [OPTIONS]

list

List out all the available charge codes.

thymed list [OPTIONS]

punch

Punch a ChargeCode.

Punch the ChargeCode id provided.

If no id provided, grab the default code,
and call its punch method.

Punches the current time. Write the data and the code,
then exit.

thymed punch [OPTIONS] [ID]...

Arguments

	
ID

	Optional argument(s)

tui

Launch the TUI.

This command launches the Text User Interface (TUI).
While the commandline functions are quite efficient,
many users may prefer or need the TUI for interacting
with Thymed. It’s quite robust and polished! Give it a try!

thymed tui [OPTIONS]

Reference

thymed

Thymed.

This file contains basic functions and classes
related to to time-keeping.

	
class thymed.ChargeCode(name, description, id, times=<factory>)

	A ChargeCode represents a type of work to dedicate hours to.

ChargeCodes have a name, description,
identification number, and optional limits on time
per week and total time dedicated.

	Parameters:

	
	name (str) –

	description (str) –

	id (int) –

	times (List[Tuple[datetime, datetime]]) –

	
times

	times is the heart of the dataclass,
it contains all the time code data in
a list of tuples. For example:
::python

[(Datetime, Datetime), … (Datetime, Datetime)]

	Type:

	List[Tuple[datetime.datetime, datetime.datetime]]

	
property is_active: [<class 'bool'>, typing.Any]

	The charge code is active if it has been activated, but not closed.

	
punch()

	Punch in/out of chargeable time.

	Return type:

	None

	
write_class()

	Write the class to the Charges json file.

	Return type:

	None

	
write_json(data=PosixPath('/home/docs/.thymed/thymed_punches.dat'), log=False)

	Write the times data to a json file.

Read the file first, then append the times to their
appropriate charge code number.

	Parameters:

	
	data (Path) –

	log (bool) –

	Return type:

	None

	
class thymed.TimeCard(id)

	A TimeCard collects work activity.

TimeCards take a single ChargeCode and collect all punch data
for them. This enables filtering, reporting, and exporting
data, but only for a single ChargeCode.

	Parameters:

	id (int) –

	
general_report(start, end)

	A general method to pull times data.

Specify a start and end date. This method will
then form a pandas dataframe from the ChargeCode,
and filter down for all times inclusively between
the two dates.

Start and End can theoretically be any datetime object.

	Parameters:

	
	start (datetime) –

	end (datetime) –

	Return type:

	DataFrame

	
monthly_report()

	Generates a report of all activity.

This method takes today’s date, and returns a
filtered set of punch data for the past 4 weeks.

	Return type:

	DataFrame

	
pay_period_report()

	Generates a report of all activity.

This method takes today’s date, and returns a
filtered set of punch data for the past 14 days.

	Return type:

	DataFrame

	
to_excel(report, folder)

	This method just saves the report to the directory provided.

	Parameters:

	
	report (DataFrame) –

	folder (Path) –

	Return type:

	Path

	
weekly_report()

	Generates a report of all activity.

This method takes today’s date, and returns a
filtered set of punch data for the past 7 days.

	Return type:

	DataFrame

	
thymed.get_code(id)

	Read stored data and return the ChargeCode specified.

	Parameters:

	id (int) –

	Return type:

	Any

	
thymed.object_decoder(obj)

	Decoder hook for the ChargeCode class.

	Return type:

	Any

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/czarified/thymed]

	Documentation [https://thymed.readthedocs.io/]

	Issue Tracker [https://github.com/czarified/thymed/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/czarified/thymed/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/czarified/thymed/issues].

How to set up your development environment

You need Python 3.7+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run thymed

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/czarified/thymed/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or advances of
any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email address,
without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
aceF22@gmail.com.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

MIT License

Copyright © 2022 Benjamin Crews

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 thymed	

Index

 Symbols
 | C
 | G
 | I
 | M
 | O
 | P
 | T
 | W

Symbols

 	
 	
 --version

 	thymed command line option

C

 	
 	ChargeCode (class in thymed)

G

 	
 	general_report() (thymed.TimeCard method)

 	
 	get_code() (in module thymed)

I

 	
 	
 ID

 	thymed-punch command line option

 	
 	is_active (thymed.ChargeCode property)

M

 	
 	
 module

 	thymed

 	
 	monthly_report() (thymed.TimeCard method)

O

 	
 	object_decoder() (in module thymed)

P

 	
 	pay_period_report() (thymed.TimeCard method)

 	
 	punch() (thymed.ChargeCode method)

T

 	
 	
 thymed

 	module

 	
 thymed command line option

 	--version

 	
 	
 thymed-punch command line option

 	ID

 	TimeCard (class in thymed)

 	times (thymed.ChargeCode attribute)

 	to_excel() (thymed.TimeCard method)

W

 	
 	weekly_report() (thymed.TimeCard method)

 	
 	write_class() (thymed.ChargeCode method)

 	write_json() (thymed.ChargeCode method)

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Thymed

_static/plus.png

